ELEX CemCat

Clean Air is our Mission Multi Pollution Control with SCR Technology

Contents

- CemCat Who we are
- SCR State of the Technology
 - Cement Industry
 - Other industries
 - Configurations
 - Monselice
 - Mergelstetten
- Integration and Innovation
 - Dust cleaning innovation
 - Catalyst life time
- Multi Pollution Control
 - VOC
 - Mercury

Who We Are

- Elex CemCat AG A partnership between Polysius and Elex
- Elex Experience (1934)
 - SCR for Waste Incineration Plants, approx. 60
 - SCR for Cement, 2 of the 3 first systems worldwide
 - The 2 only systems (high-dust) operating in cement
- Polysius Experience (1859)
 - 150 Years of Cement Plant Equipment Design and Manufacturing
 - Pyroprocessing and Environmental Expertise around the World
 - World Class R&D Facilities, Pilot Plant Stations and Industrial Measuring Campaigns
- Polysius and Elex Partnership creates unique expertise for SCR in Cement Applications

SCR – State of Technology in Cement

- Plants with SCR
 - Solnhofen, Germany, HD, started 2001, currently shut down
 - Cementeria di Monselice, Italy, HD, operating since 2006
 - Cementeria di Sarche , Italy, SD, operating since 2007, Lepol system
 - Schwenk Mergelstetten, Germany, HD, started 2010
- Projects
 - Rohrdorf Zement, Germany, TE, commissioning in 3/2011
 - Monselice, Italy, Italcementi, SD, tendering process, commissioning 3/2012
 - Mannersdorf, Austria, Lafarge, SD, tendering process, commissioning 1/2012
 - **–** ...
 - → SCR enforced by EU directive.
- NH₃ from raw materials not emitted but utilized
- Can be combined with other technologies like MSC and SNCR.

SCR in Cement vs. other Industries

- State of the art in waste incinerators, power plants and other industries.
 - In use for 30+ years in Japan and EU
 - Low emission thresholds in many countries
 - 95% NOx reduction possible
 - VOC, PCDD/F oxidation
 - Elemental mercury oxidation
- Technical situation is the same in cement production, except dust in flue gas
 - Content is higher
 - Stickiness is stronger
 - Abrasiveness is lower

Flow sheet configurations

• High Dust (HD)

• Semi Dust (SD)

Tail End (TE)

- Lowest investment cost
- + Lowest power consumption
- + Flue gas temperature suitable for SCR
- + No interference with main process
- + Easiest option for retrofits
- + High dust protects against poisoning

High amount of dust requires online cleaning

Semi Dust

- + Low dust cleaning in catalyst
- + Easy bypass arrangement
- + No interference with main process
- Higher cost of installation
- Sometimes complex duct routings in retrofits

- + Very low dust concentrations
 - ⇒ No dust cleaning required
- + Longer lifetime of catalyst expected
- + Improved VOC und PCDD/F reduction due to small pitch
- + Easy erection

- High cost of installation
- Requires reheating of flue gas

 ⇒ No power generation at cooler possible
- Higher power consumption (fan)
- Mercury effected only with additional scrubber downstream
- SCR coupled to clinker cooler process
- Corrosion risk downstream of catalyst

Monselice, Italy

SCR design data:

• Kiln output: 2640 stpd

• Gas flow: 160'000 Nm3/h

• Temperature: 300 – 320 °C

• Stat. pressure: -80 mbar

• NO_x in: 2260 mg/Nm³

• NO_x out: 232 mg/Nm³ (@ 2.5% O_2)

• NO_X stack: 200 mg/Nm³ (@ 4.5% O_2)

• NH_3 -Slip: < 5 mg/Nm³

• NH₄OH 25%: 445 kg/h

100 mg/Nm³ approx. 0,3 lb/st

Mergelstetten, Germany

SCR design data:

• Kiln output: 3300 stpd

• Gas flow: 220'000 Nm3/h

• Temperature: 370 – 400 °C

• Stat. pressure: -5 mbar

• NO_x in: 1500 mg/Nm³

• NO_X out: 100 mg/Nm³ (@ 10% O_2)

• NH_3 -Slip: < 5 mg/Nm³

100 mg/Nm³ approx. 0,3 lb/st

Integration and Innovation

Integration:

- To reduce pollutants without compromising the process
 - ⇒ high-dust or semi-dust
- To avoid adding equipment that generates its own high environmental impact
 - ⇒ high-dust
- To avoid cluttering the process with multiple systems each capable of only addressing a single pollutant

Innovation:

- To adjust the process to cement dust
 - ⇒ reliability
- To limit deactivation of catalyst
 - ⇒ reliability

Reliability – Dust Cleaning is the Key

Hard Coatings

- Dust contains clay minerals and anhydride
- + No longer seen with our optimized cleaning design

Clogging

- High dust concentration and high stickiness
- + Reversible with our optimized cleaning design

Initial problems are solved.

Reliability – Life time of catalyst

- Mechanical erosion
 - Lower than in power plants, dust is finer and less aggressive
 - ⇒ Not a significant effect on life time seen in Monselice
- Physical coating with anhydrite and clays
 - 7-25% activity loss in 7.500 h. This is covered with the design
 - Can be cleaned by washing
 - ⇒ Not an obstacle
- Poisoning with Thallium in Semi Dust
 - 43% activity loss after 16.000 h in combination with phosphorous
 - 48% activity loss after 1.650 h
 - Problems are reported from small pilot installations
 - Little dust seems to be critical
 - ⇒ Not yet fully understood

THC Oxidation – Performance Monselice SCR Unit

THC Oxidation – Performance Monselice SCR Unit

THC Oxidation – Species Oxidized

VOC Oxidation – Species Oxidized

VOC Oxidation – Frequency Distribution of VOC Emissions

Sufficient for all plants!

Mercury oxidation

- Ammonia decreases through reactor
 - Surplus of active sites increases
- Surplus of active sites (V₂O₅) results in increasing rate of...
 - VOC oxidation
 - Dioxin and furan oxidation
 - SO₂ to SO₃ oxidation
 - Mercury oxidation
- ⇒ Competing reactions on catalyst
- ⇒ Sizing determines the rate of non-NO_x conversion
- Reaction mechanism
 - Adsorption of halogens on V₂O₅
 - Adsorption of elemental Hg on V₂O₅
 - Desorption of HgCl₂ and H₂O
 - Oxidation of V_2O_4 to V_2O_5

Measurement of mercury in Monselice

Conclusions of Mercury Measurement

- Significant reduction of gaseous mercury
 - Using the standard CemCat SCR
 - Without compromising SCR's ability to remove other pollutants
 - Additional measuring campaigns are planned
 - Current data is from a single installation
- Mercury extraction with CKD, ACI or scrubbers benefits from SCR
- Potential in US
 - Applying data from the European study shows potentially around 70% of existing US plants would be in compliance with the stringent new NESHAP regulations
- Further research will help improve these results

-

Summary

- SCR has proven itself in significantly reducing NO_X , VOC and Dioxins and Furans in the Cement Industry
- Preliminary data shows a significant reduction of Mercury emissions by a recent measuring campaign in Europe
- Reliable dust cleaning in High-Dust configuration
- Eliminates need to invest in a separate pollution control technology for each of the targeted pollutants
- SCR has already established itself as a viable technology for multi-component emission reduction in the power and incinerator industries
 - Polysius/CemCat is poised to aggressively test SCR technology with cement industry and regulatory partners in the U.S.

